به گزارش قدس آنلاین از دانشگاه تربیت مدرس، قلب مهمترین عضو بدن است که خون را به مغز و سایر اندامهای بدن میرساند. آشکارسازی ناهنجاری در صدای قلب (phonocardiogram) یکی از روشهای مهم برای تشخیص بیماریهای قلبی است.
پویا سید قاسمی که این پژوهش در قالب پایاننامه کارشناسی ارشد وی در رشته مهندسی برق، گرایش مخابرات سیستم انجام شده است، با بیان این مقدمه گفت: استفاده از ابزار هوش مصنوعی میتواند کارایی و دقت این تشخیص را بهبود بخشد، سیگنال صدای قلب حاوی اطلاعات قابل توجهی از وضعیت دریچهها و عروق قلب است و میتوان با تحلیل دقیقتر صدای قلب ناهنجاریهای احتمالی دریچههای عروقی را آشکار کرد.
وی ادامه داد: ناهنجاریهای قلبی در بازه یک سیکل قلب سبب ایجاد صدای اضافه یا سوفل میشوند، بررسی زمانی-شکلی این ناهنجاری سبب تشخیص نوع بیماری میشود، از طرفی نیاز به تجربه و خبرگی برای تشخیص بیماری به وسیله صدای قلب و همچنین خطاهای انسانی در تشخیص بیماریهای قلبی، سبب انگیزهای جهت خودکار کردن این فرایند شده است.
سید قاسمی به روشهای متعدد تشخیص بیماریهای قلبی به وسیله صدای قلب اشاره کرد و گفت: در سالهای اخیر روشهای متعددی جهت تشخیص بیماریهای قلبی به وسیله صدای قلب پیشنهاد شده است که هر کدام مزایا و معایب خود را دارند، در این پژوهش با توجه به ویژگیهای زمانی-شکلی صدای قلب سعی در طراحی کرنلهای (فیلتر) لایه CNN شبکه عصبی با الهام از ویژگیهای زمانی-شکلی (تبدیل شکلینه) صدای قلب شده است.
وی در تشریح روش پیشنهادی خود اظهار داشت: در چهار روش پیشنهادی ارائه شده در این تحقیق نشان داده شده است که جایگذاری شکلینههای محاسبه شده در کرنل لایه CNN سبب کاهش هزینه آموزش (کاهش نمونههای آموزشی) و افزایش دقت میشود. استفاده از ویژگیهای فراکتالی (الگوهای تکرار شونده) به همراه ویژگیهای شکلی آن، سبب بهبود طبقهبندی و رسیدن به دقت کل ۹۹.۲ درصد شده است. علاوه بر سادگی محاسبات، این روش قابلیت استفاده در سامانههای ارزان قیمت با سرعت پاسخگویی مناسب دارد.
نظر شما